5 Best Ways to Get the Weekday from Timestamp Object in Pandas

πŸ’‘ Problem Formulation: When working with dates and times in Python using pandas, a common task is to extract the weekday from a timestamp object. This can be crucial for data analysis tasks, such as categorizing data by the day of the week to discover weekly trends. For instance, given a pandas Series of timestamps, the objective is to create a new Series that contains string names or integer representations of the weekdays.

Method 1: Using dt.day_name()

Pandas provides a dt accessor to work with timedeltas, and dt.day_name() returns the day of the week as a string. This method is straight-forward and ideal for creating a human-readable format of the day names.

Here’s an example:

import pandas as pd

# Assuming 'timestamps' is a pandas Series with datetime objects
timestamps = pd.Series(pd.date_range('2023-03-01', periods=3, freq='D'))
weekdays = timestamps.dt.day_name()

print(weekdays)

Output:

0    Wednesday
1     Thursday
2       Friday
dtype: object

This code snippet creates a pandas.Series of timestamps, then it uses the dt.day_name() method to extract the name of the weekday. The output is a new Series where each datetime object is replaced with its corresponding weekday name.

Method 2: Using dt.weekday()

Another option is to utilize dt.weekday(), which returns the day of the week as an integer (where Monday=0 and Sunday=6). This method is useful when the weekday needs to be represented as a numerical value for further calculations or analysis.

Here’s an example:

import pandas as pd

timestamps = pd.Series(pd.date_range('2023-03-01', periods=3, freq='D'))
weekdays_numerical = timestamps.dt.weekday

print(weekdays_numerical)

Output:

0    2
1    3
2    4
dtype: int64

This snippet demonstrates how to convert a Series of timestamps into a Series of integers representing each day’s position in the week. The dt.weekday is used, which directly maps the weekdays to their respective indices starting from 0 (Monday).

Method 3: Using dt.strftime()

The dt.strftime() function is a powerful method for extracting day names by formatting a datetime object as a string based on the directive given. The '%A' directive returns the full weekday name.

Here’s an example:

import pandas as pd

timestamps = pd.Series(pd.date_range('2023-03-01', periods=3, freq='D'))
weekdays_strf = timestamps.dt.strftime('%A')

print(weekdays_strf)

Output:

0    Wednesday
1     Thursday
2       Friday
dtype: object

This code snippet illustrates using dt.strftime() with the '%A' format code to get the weekday name. Like dt.day_name(), it returns the name of the day but has the added benefit of being customizable with different format codes.

Method 4: Using apply() with a Custom Function

Sometimes, a custom function may be required for more complex weekday manipulations. Using apply() allows you to apply any function to each element in the Series.

Here’s an example:

import pandas as pd

def get_weekday_name(timestamp):
    return timestamp.strftime('%A')

timestamps = pd.Series(pd.date_range('2023-03-01', periods=3, freq='D'))
weekdays_custom = timestamps.apply(get_weekday_name)

print(weekdays_custom)

Output:

0    Wednesday
1     Thursday
2       Friday
dtype: object

This snippet defines a custom function get_weekday_name() that formats a single datetime object to its weekday name. The apply() method is then used to run this function over each element in the Series, returning a Series of weekday names.

Bonus One-Liner Method 5: Using List Comprehension

List comprehension in Python is a concise way to apply an operation to each item in a list. The same can be applied to pandas Series to extract the weekday name in a single line of code.

Here’s an example:

import pandas as pd

timestamps = pd.Series(pd.date_range('2023-03-01', periods=3, freq='D'))
weekdays_list_comp = [ts.strftime('%A') for ts in timestamps]

print(weekdays_list_comp)

Output:

['Wednesday', 'Thursday', 'Friday']

Here, a list comprehension is used to iterate through all the datetime objects in the Series and apply the strftime('%A') function to each. This seamlessly generates a list of weekday names.

Summary/Discussion

  • Method 1: Using dt.day_name(). Strengths: Provides weekday names in a readable format. Weaknesses: Provides less flexibility compared to other methods.
  • Method 2: Using dt.weekday(). Strengths: Ideal for numerical analysis and straightforward. Weaknesses: The output is not as intuitive as full day names.
  • Method 3: Using dt.strftime(). Strengths: Highly customizable with a variety of format codes. Weaknesses: Slightly more complex syntax.
  • Method 4: Using apply() with a custom function. Strengths: Offers flexibility for more complex cases. Weaknesses: Can be overkill for simple tasks and less performant than vectorized methods.
  • Method 5: Using list comprehension. Strengths: Quick and Pythonic way for simple transformations. Weaknesses: Not a pandas-native solution, and might be slower on large datasets.