[Cheat Sheet] 6 Pillar Machine Learning Algorithms

This machine learning cheat sheet gives you a visual overview of 6 must-know machine learning algorithms (and where to learn more). Linear Regression: train your linear model to predict output values. K-Means Clustering: apply it on unlabeled data to find clusters and patterns in your data. K-Nearest Neighbors: use a similarity metric to find the … Read more

Logistic Regression in Python Scikit-Learn

Logistic regression is a popular algorithm for classification problems (despite its name indicating that it is a “regression” algorithm). It belongs to one of the most important algorithms in the machine learning space. Linear Regression Background Let’s review linear regression. Given the training data, we compute a line that fits this training data so that … Read more

Random Forest Classifier with sklearn

Does your model’s prediction accuracy suck but you need to meet the deadline at all costs? Try the quick and dirty “meta-learning” approach called ensemble learning. In this article, you’ll learn about a specific ensemble learning technique called random forests that combines the predictions (or classifications) of multiple machine learning algorithms. In many cases, it … Read more

SVM sklearn: Python Support Vector Machines Made Simple

Support Vector Machines (SVM) have gained huge popularity in recent years. The reason is their robust classification performance – even in high-dimensional spaces: SVMs even work if there are more dimensions (features) than data items. This is unusual for classification algorithms because of the curse of dimensionality – with increasing dimensionality, data becomes extremely sparse … Read more

Python Scikit-Learn Decision Tree [Video + Blog]

Decision Trees are powerful and intuitive tools in your machine learning toolbelt. Decision trees are human-readable – in contrast to most other machine learning techniques. You can easily train a decision tree and show it to your supervisors who do not need to know anything about machine learning in order to understand how your model … Read more

Neural Networks with SKLearn MLPRegressor

Neural Networks have gained massive popularity in the last years. This is not only a result of the improved algorithms and learning techniques in the field but also of the accelerated hardware performance and the rise of General Processing GPU (GPGPU) technology. In this article, you’ll learn about the Multi-Layer Perceptron (MLP) which is one … Read more

K-Nearest Neighbors (KNN) with sklearn in Python

The popular K-Nearest Neighbors (KNN) algorithm is used for regression and classification in many applications such as recommender systems, image classification, and financial data forecasting. It is the basis of many advanced machine learning techniques (e.g., in information retrieval). There is no doubt that understanding KNN is an important building block of your proficient computer … Read more

[Tutorial] K-Means Clustering with SKLearn in One Line

If there is one clustering algorithm you need to know – whether you are a computer scientist, data scientist, or machine learning expert – it’s the K-Means algorithm. In this tutorial drawn from my book Python One-Liners, you’ll learn the general idea and when and how to use it in a single line of Python … Read more