
Python Cheat Sheet: Complex Data Types
“​A puzzle a day to learn, code, and play​” → Visit ​finxter.com

 Description Example

List A container data type that stores a
sequence of elements. Unlike strings, lists
are mutable: modification possible.

l = [​1​, ​2​, ​2​]
print(len(l)) ​# 3

Adding
elements

Add elements to a list with (i) append, (ii)
insert, or (iii) list concatenation.
The append operation is very fast.

[​1​, ​2​, ​2​].append(​4​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​4​].insert(​2​,​2​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​2​] + [​4​] # [1, 2, 2, 4]

Removal Removing an element can be slower. [​1​, ​2​, ​2​, ​4​].remove(​1​) ​# [2, 2, 4]

Reversing This reverses the order of list elements. [​1​, ​2​, ​3​].reverse() ​# [3, 2, 1]

Sorting Sorts a list. The computational complexity
of sorting is superlinear in the no. list
elements.

[​2​, ​4​, ​2​].sort() ​# [2, 2, 4]

Indexing Finds the first occurence of an element in
the list & returns its index. Can be slow as
the whole list is traversed.

[​2​, ​2​, ​4​].index(​2​) ​# index of element 2 is "0"
[​2​, ​2​, ​4​].index(​2​,​1​) ​# index of element 2 after pos 1 is "1"

Stack Python lists can be used intuitively as
stacks via the two list operations append()
and pop().

stack = [3]

stack.append(​42​) ​# [3, 42]
stack.pop() ​# 42 (stack: [3])
stack.pop() ​# 3 (stack: []​)

Set A set is an unordered collection of unique
elements (“at-most-once”).

basket = {​'apple'​, ​'eggs'​, ​'banana'​, ​'orange'​}
same = set([​'apple'​, ​'eggs'​, ​'banana'​, ​'orange']​)

Dictionary The dictionary is a useful data structure for
storing (key, value) pairs.

calories = {​'apple'​ : ​52​, ​'banana'​ : ​89​, ​'choco'​ : ​546​}

Reading and
writing
elements

Read and write elements by specifying the
key within the brackets. Use the keys() and
values() functions to access all keys and
values of the dictionary.

print(calories[​'apple'​] < calories[​'choco'​]) ​# True
calories[​'cappu'​] = ​74
print(calories[​'banana'​] < calories[​'cappu'​]) ​# False
print(​'apple'​ ​in​ calories.keys()) ​# True
print(​52​ ​in​ calories.values()) ​# True

Dictionary
Looping

You can access the (key, value) pairs of a
dictionary with the​ items()​ method.

for k, v in calories.items():

print(k) if v > 500 else None​ ​# 'choco'

Membership
operator

Check with the ‘in’ keyword whether the
set, list, or dictionary contains an element.
Set containment is faster than list
containment.

basket = {​'apple'​, ​'eggs'​, ​'banana'​, ​'orange'​}
print(​'eggs'​ ​in​ basket) ​# True
print(​'mushroom'​ ​in​ basket) ​# False

List and Set
Comprehens
ion

List comprehension is the concise Python
way to create lists. Use brackets plus an
expression, followed by a for clause. Close
with zero or more for or if clauses.

Set comprehension is similar to list
comprehension.

List comprehension

l = [(​'Hi '​ + x) ​for​ x ​in​ [​'Alice'​, ​'Bob'​, ​'Pete'​]]
print(l) ​# ['Hi Alice', 'Hi Bob', 'Hi Pete']
l2 = [x * y ​for​ x ​in​ range(​3​) ​for​ y ​in​ range(​3​) ​if​ x>y]
print(l2) ​# [0, 0, 2]
Set comprehension

squares = { x**​2​ ​for​ x ​in​ [​0​,​2​,​4​] ​if​ x < ​4​ } ​# {0, 4}

https://finxter.com/

