Python Cheat Sheet: Complex Data Types

“A puzzle a day to learn, code, and play” =+ Visit finxter.com

Description Example

List A container data type that stores a 1=11, 2, 2]
sequence of elements. Unlike strings, lists | print(len(l)) # 3
are mutable: modification possible.

Adding Add elements to a list with (i) append, (ii) [1, 2, 2].append(4) # [1, 2, 2, 4]
elements insert, or (iii) list concatenation. [1, 2, 4].insert(2,2) # [1, 2, 2, 4]
The append operation is very fast. [1, 2, 2] + [4] # [1, 2, 2, 4]
Removal Removing an element can be slower. [1, 2, 2, 4].remove(l) # [2, 2, 4]
Reversing This reverses the order of list elements. [1, 2, 3].reverse() # [3, 2, 1]
Sorting Sorts a list. The computational complexity [2, 4, 2].sort() # [2, 2, 4]
of sorting is superlinear in the no. list
elements.
Indexing Finds the first occurence of an element in [2, 2, 4].index(2) # index of element 2 is "O"

the list & returns its index. Can be slow as [2, 2, 4].index(2,1) # index of element 2 after pos 1 is "1"
the whole list is traversed.

Stack Python lists can be used intuitively as stack = [3]
stacks via the two list operations append() | stack.append(42) # [3, 42]
and pop(). stack.pop() # 42 (stack: [3])

stack.pop() # 3 (stack: [])

Set A set is an unordered collection of unique basket = {'apple', 'eggs', 'banana', ‘'orange'}
elements (“at-most-once”). same = set(['apple', 'eggs', 'banana', 'orange'])

Dictionary The dictionary is a useful data structure for | calories = {'apple’' : 52, 'banana' : 89, 'choco' : 546}
storing (key, value) pairs.

Reading and = Read and write elements by specifying the | print(calories['apple'] < calories['choco']) # True

writing key within the brackets. Use the keys() and | calories['cappu'] = 74
elements values() functions to access all keys and print(calories['banana'] < calories['cappu']) # False
values of the dictionary. print('apple' in calories.keys()) # True

print(52 in calories.values()) # True

Dictionary You can access the (key, value) pairs of a for k, v in calories.items():
Looping dictionary with the items() method. print(k) if v > 500 else None # 'choco’

Membership = Check with the ‘in” keyword whether the basket = {'apple', 'eggs', 'banana', ‘'orange'}
operator set, list, or dictionary contains an element. | print('eggs' in basket) # True
Set containment is faster than list print('mushroom’ in basket) # False
containment.

Listand Set | List comprehension is the concise Python # List comprehension

Comprehens | way to create lists. Use brackets plus an 1 =[('HL " + x) for x in ['Alice', 'Bob', 'Pete']]
ion expression, followed by a for clause. Close | print(1) # ['Hi Alice', 'Hi Bob', 'Hi Pete']
with zero or more for or if clauses. 12 = [x * y for x in range(3) for y in range(3) if x>y]

print(12) # [0, 0, 2]
; # Set comprehension
comprehension. squares = { x**2 for x in [0,2,4] if x < 4 } # {0, 4}

Set comprehension is similar to list

finxter

https://finxter.com/

