The Pandas DataFrame has several Re-indexing/Selection/Label Manipulations methods. When applied to a DataFrame, these methods evaluate, modify the elements and return the results.
Preparation
Before any data manipulation can occur, two (2) new libraries will require installation.
- The Pandas library enables access to/from a DataFrame.
- The NumPy library supports multi-dimensional arrays and matrices in addition to a collection of mathematical functions.
To install these libraries, navigate to an IDE terminal. At the command prompt ($
), execute the code below. For the terminal used in this example, the command prompt is a dollar sign ($
). Your terminal prompt may be different.
$ pip install pandas
Hit the <Enter>
key on the keyboard to start the installation process.
$ pip install numpy
Hit the <Enter>
key on the keyboard to start the installation process.
If the installations were successful, a message displays in the terminal indicating the same.
Feel free to view the PyCharm installation guide for the required libraries.
Add the following code to the top of each code snippet. This snippet will allow the code in this article to run error-free.
import pandas as pd import numpy as np
DataFrame reset_index()
The reset_index()
method resets the DataFrames index and reverts the DataFrame to the default (original) index.
The syntax for this method is as follows:
DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')
Parameter | Description |
---|---|
level | This parameter can be an integer, string, tuple, or list-like. It removes said levels from the index. By default, this parameter removes all levels. |
drop | Do not insert an index into a DataFrame column. This option will reset the index to the original integer index. |
col_level | If multi-level, this parameter determines the insertion level. By default, use the first level. |
For this example, we have three (3) Classical Composers with some details about their life. They will be assigned levels based on the difficulty of their compositions.
Code β reset_index()
data = {'Composer': ['Chopin', 'Listz', 'Haydn'], 'Born': [1810, 1811, 1732], 'Country': ['France', 'Austria', 'Austria']} index = {'Level-1', 'Level-2', 'Level-3'} df = pd.DataFrame(data, index) print(df) df.reset_index(inplace=True, drop=True) print(df)
- Line [1] creates a dictionary of lists and saves it to
data
. - Line [2] sets index labels for the Composers and saves them to the variable
index
. - Line [3] creates a DataFrame and assigns it to
df
. - Line [4] outputs the result to the terminal.
- Line [5] resets the DataFrame index (
reset_index()
) back to the original integer index. - Line [6] outputs the result to the terminal.
Output
df
Composer | Born | Country | |
Level-1 | Chopin | 1810 | France |
Level-3 | Listz | 1811 | Austria |
Level-2 | Haydn | 1732 | Austria |
result
Composer | Born | Country | |
0 | Chopin | 1810 | France |
1 | Listz | 1811 | Austria |
2 | Haydn | 1732 | Austria |
Another way to accomplish the above task is to use the concat()
method.
Code β concat()
data = {'Composer': ['Chopin', 'Listz', 'Haydn'], 'Born': [1810, 1811, 1732], 'Country': ['France', 'Austria', 'Austria']} index = {'Level-1', 'Level-2', 'Level-3'} df = pd.DataFrame(data, index) print(df) df1 = pd.concat([df], ignore_index=True) print(df)
- Line [1] creates a dictionary of lists and saves it to
data
. - Line [2] sets index labels for the Composers and saves them to the variable
index
. - Line [3] creates a DataFrame and assigns it to
df
. - Line [4] outputs the result to the terminal.
- Line [5] resets the DataFrame index (
concat()
) back to the original integer index. - Line [6] outputs the result to the terminal.
Output
df
Composer | Born | Country | |
Level-1 | Chopin | 1810 | France |
Level-3 | Listz | 1811 | Austria |
Level-2 | Haydn | 1732 | Austria |
result
Composer | Born | Country | |
0 | Chopin | 1810 | France |
1 | Listz | 1811 | Austria |
2 | Haydn | 1732 | Austria |
DataFrame sample()
The sample()
method retrieves and returns a random sample of columns or rows (depending on the selected axis) from a DataFrame/Series.
The syntax for this method is as follows:
DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ignore_index=False)
Parameter | Description |
---|---|
n | N is the number of elements (items) to return from the selected axis. By default, one (1). |
frac | The fraction of elements (items) to return from the selected axis. If frac , do not use the N parameter. If the value of frac is more than one (1) replace parameter must be True . |
replace | If True , allow a sample of the same row more than once. If False , do not allow the same row more than once. By default, False . |
weights | If None , weight is set to equal probability weighting. If a Series, it will align with the object on the index. If not located, ignore the index: assign the weights zero (0). If a DataFrame, accept the column name when the selected axis is zero (0). |
axis | If zero (0) or index is selected, apply to each column. Default 0. If one (1) apply to each row. |
ignore_index | If True , the index will start numbering from 0 on (ex: 0, 1, 2, etc.). |
For these examples, the finxters.csv
data saves to a DataFrame to manipulate the data.
df = pd.read_csv('finxters.csv') result = df['First_Name'].sample(n=3, random_state=1) print(result)
- Line [1] reads in the comma-separated CSV file and saves it to
df
. - Line [2] retrieves three (3) random ‘
First_Names
‘ values and saves them to theresult
variable. - Line [3] outputs the result to the terminal.
Output
27 | Victoria |
35 | Diana |
40 | Owen |
Name: First_Name, dtype: object |
In this example, the np.random.randint()
method calls and generates random integers on a selected column.
Code β Example 2
df = pd.read_csv('finxters.csv') nums = np.random.randint(df['FID'], size=50) result = df['FID'].sample(n=3, random_state=nums) print(result)
- Line [1] reads in the comma-separated CSV file and saves it to
df
. - Line [2] generates random integers (
np.random.randint()
) from the CSV file based on the ‘FID
‘ column. - Line [3] retrieves three (3) integers from the random numbers generated on Line [2]. This output saves to the
result
variable. - Line [4] outputs the result to the terminal.
Output
34 | 3002381 |
15 | 3002244 |
17 | 3002260 |
Name: FID, dtype: int64 |
DataFrame set_axis()
The set_axis()
method assigns index(es) to the selected axis.
The syntax for this method is as follows:
DataFrame.set_axis(labels, axis=0, inplace=False)
Parameter | Description |
---|---|
labels | This parameter is a list or a list-like object containing index labels. |
axis | If zero (0) or index is selected, apply to each column. Default 0. If one (1) apply to each row. |
inplace | If False , a copy of the original DataFrame/Series is updated. This parameter is None , by default. |
For these examples, the index saves to the selected axis.
In this example, we set the axis to the row index.
Code β Example 1
df = pd.DataFrame({'Micah': [123, 120, 144], 'Paula': [129, 125, 90], 'Chloe': [101, 95, 124]}) print(df) result = df.set_axis(['Day-1', 'Day-2', 'Day-3'], axis='index') print(result)
- Line [1] creates a dictionary of lists and saves it to
df
. - Line [2] outputs the DataFrame (
df
) to the terminal. - Line [3] sets the new axis for the DataFrame and saves it to the
result
variable. - Line [4] outputs the result to the terminal.
Output
df
Micah | Paula | Chloe | |
0 | 123 | 129 | 101 |
1 | 120 | 125 | 95 |
2 | 144 | 90 | 124 |
result
Micah | Paula | Chloe | |
Day-1 | 123 | 129 | 101 |
Day-2 | 120 | 125 | 95 |
Day-3 | 144 | 90 | 124 |
In this example, we set the axis to the column index.
Code β Example 2
df = pd.DataFrame({'Micah': [123, 120, 144], 'Paula': [129, 125, 90], 'Chloe': [101, 95, 124]}) print(df) result = df.set_axis(['Micah M', 'Paula D', 'Chloe J'], axis='columns') print(result)
- Line [1] creates a dictionary of lists and saves it to
df
. - Line [2] outputs the DataFrame (
df
) to the terminal. - Line [3] sets the new axis for the DataFrame and saves it to the
result
variable. - Line [4] outputs the result to the terminal.
Output
df
Micah | Paula | Chloe | |
0 | 123 | 129 | 101 |
1 | 120 | 125 | 95 |
2 | 144 | 90 | 124 |
result
Micah M | Paula D | Chloe J | |
0 | 123 | 129 | 101 |
1 | 120 | 125 | 95 |
2 | 144 | 90 | 124 |
DataFrame set_index()
The set_index()
method sets the DataFrame index using existing columns/rows.
The syntax for this method is as follows:
DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
Parameter | Description |
---|---|
keys | A single column or list-like array. Must be the same length as DataFrame. |
drop | Do not insert an index into a DataFrame. |
append | If True , append columns to index. If False , do not append. By default, True . |
inplace | If True , the original DataFrame is updated. If False , a new object is updated and returned. |
verify_integrity | This parameter checks the new index for duplicates (columns). Set to False for faster performance. |
For this example, the Salesperson(s) who sold the highest number of cars over four (4) months display.
df = pd.DataFrame({'Salesman': ['Greg', 'Fred', 'Helen', 'Tim'], 'Month': ['Jan', 'Feb', 'Mar', 'Apr'], 'Sold': [165, 156, 196, 124]}) result = df.set_index('Salesperson') print(result)
- Line [1] creates a Dictionary of Lists and saves it to df.
- Line [2] sets the index to ‘Salesperson’ and saves it to the result variable.
- Line [3] outputs the result to the terminal.
Output
Month | Sold | |
Salesperson | ||
Greg | Jan | 165 |
Fred | Feb | 156 |
Helen | Mar | 196 |
Tim | Apr | 124 |
DataFrame take()
The take()
method returns the elements (data) across the selected axis. The indexing performs on the actual position of the DataFrame element.
π Note: This method has been deprecated (since version 1.0.0).
The syntax for this method is as follows:
DataFrame.take(indices, axis=0, is_copy=None, **kwargs)
Parameter | Description |
---|---|
indices | List (array) of integers that specify locations to take. |
axis | If zero (0) or index is selected, apply to each column. Default 0. If one (1) apply to each row. |
is_copy | As of pandas v1.0, this parameter always returns a copy. |
**kwargs | To be compatible with numpy.take() , the take() method does not affect the output. |
For this example, the finxters.csv
data saves to a DataFrame to manipulate the data.
df = pd.read_csv('finxters.csv') result = df.take([30, 31], axis=0) print(result)
- Line [1] reads in the comma-separated CSV file and saves it to
df
. - Line [2] takes the 30th and 31st row of the CSV file and saves it to the
result
variable. - Line [3] outputs the result to the terminal.
Output
DataFrame truncate()
The truncate()
method truncates a DataFrame/Series before and after a selected index value.
The syntax for this method is as follows:
DataFrame.truncate(before=None, after=None, axis=None, copy=True)
Parameter | Description |
---|---|
before | Truncate (remove) rows before a said index value. The data type can be a date, string, or integer. |
after | Truncate (remove) rows after a said index value. The data type can be a date, string, or integer. |
axis | If zero (0) or index is selected, apply to each column. Default 0. If one (1) apply to each row. |
copy | If True , a copy of the truncated DataFrame/Series returns. This boolean is True by default. |
For this example, we have a DataFrame containing a message.
df = pd.DataFrame({'C': ['f', 'i', 'n', 'x', 't', 'e', 'r'], 'O': ['p', 'u', 'z', 'z', 'l', 'e', 's'], 'D': ['a', 'w', 'e', 's', 'o', 'm', 'e'], 'E': ['w', 'a', 'y', '-', 't', 'o', '-'], 'R': ['l', 'e', 'r', 'n', '!', '!', '!']}, index=[1, 2, 3, 4, 5, 6, 7]) print(df) result = df.truncate(before=2, after=4) print(result)
- Line [1] creates a DataFrame from a dictionary of lists and saves it to
df
. - Line [2] outputs the result to the terminal.
- Line [3] truncates and saves the output to the
result
variable. - Line [4] outputs the result to the terminal.
Output
df
result
Further Learning Resources
This is Part 10 of the DataFrame method series.
Also, have a look at the Pandas DataFrame methods cheat sheet!
Learn Pandas the Fun Way by Solving Code Puzzles
If you want to boost your Pandas skills, consider checking out my puzzle-based learning book Coffee Break Pandas (Amazon Link).
It contains 74 hand-crafted Pandas puzzles including explanations. By solving each puzzle, you’ll get a score representing your skill level in Pandas. Can you become a Pandas Grandmaster?
Coffee Break Pandas offers a fun-based approach to data science mastery—and a truly gamified learning experience.