Preparation
Before any data manipulation can occur, four (4) new libraries will require installation.
- The Pandas library enables access to/from a DataFrame.
- The NumPy library supports multi-dimensional arrays and matrices in addition to a collection of mathematical functions.
- The pandas_gbq allows access to Google Big Query (GBQ)
- The google.auth authentication.
To install these libraries, navigate to an IDE terminal. At the command prompt ($
), execute the code below. For the terminal used in this example, the command prompt is a dollar sign ($
). Your terminal prompt may be different.
$ pip install pandas
Hit the <Enter> key on the keyboard to start the installation process.
$ pip install pandas_gbq
Hit the <Enter> key on the keyboard to start the installation process.
$ pip install numpy
Hit the <Enter> key on the keyboard to start the installation process.
$ pip install google.auth
Hit the <Enter> key on the keyboard to start the installation process.
If the installations were successful, a message displays in the terminal indicating the same.
Feel free to view the PyCharm installation guide for the required libraries.
Add the following code to the top of each code snippet. This snippet will allow the code in this article to run error-free.
import pandas as pd import numpy as np from google.cloud import bigquery import google.auth
DataFrame Sparse to_coo()
The sparse to_coo()
method creates a scipy.sparse.coo_matrix
from a Series containing a MultiIndex
. The row_levels
and column_levels
determine the row/column coordinates.
The syntax for this method is as follows:
Series.sparse.to_coo(row_levels=(0,), column_levels=(1,), sort_labels=False)
Parameter | Description |
---|---|
row_levels | This parameter is a tuple or a list. |
column_levels | This parameter is a tuple or a list. |
sort_labels | The sort is performed before creating the sparse matrix if this parameter is True. |
This example has random and missing data. This data is re-sampled and converted into a tuple format using to_coo()
.
stats = pd.Series([1.0080, 4.00260, 7.0, 9.012183, np.nan, np.nan]) stats.index = pd.MultiIndex.from_tuples( [(np.nan, 2, "a", 0), (1, 2, "a", 1), (np.nan, 1, "b", 0), (1, 1, "b", 1), (2, 1, "b", 0), (np.nan, 1, "b", 1)], names=["HYD", "HEL", "LIT", "BER"]) new_stats = stats.astype("Sparse") A, rows, columns = new_stats.sparse.to_coo( row_levels=["HYD", "HEL"], column_levels=["LIT", "BER"], sort_labels=True) print(A)
Output
(0, 0) 1.008 |
(1, 1) 4.0026 |
(2, 2) 7.0 |
(3, 3) 9.012183 |
If we applied the todense()
method to the above data, the output would be as follows:
stats = pd.Series([1.0080, 4.00260, 7.0, 9.012183, np.nan, np.nan]) stats.index = pd.MultiIndex.from_tuples( [(np.nan, 2, "a", 0), (1, 2, "a", 1), (np.nan, 1, "b", 0), (1, 1, "b", 1), (2, 1, "b", 0), (np.nan, 1, "b", 1)], names=["HYD", "HEL", "LIT", "BER"]) new_stats = stats.astype("Sparse") A, rows, columns = new_stats.sparse.to_coo( row_levels=["HYD", "HEL"], column_levels=["LIT", "BER"], sort_labels=True) print(A.todense())
Output
[[1.008 0. 0. 0. ] |
More Pandas DataFrame Methods
Feel free to learn more about the previous and next pandas DataFrame methods (alphabetically) here:
Also, check out the full cheat sheet overview of all Pandas DataFrame methods.