Python __irshift__() Magic Method

Syntax

object.__irshift__(self, other)

The Python __irshift__() magic method implements in-place bitwise right-shift operation x >>= y that calculates the right-shift operation x >> y, and assigns the result to the first operands variable x. This operation is also called augmented arithmetic assignment. The method simply returns the new value to be assigned to the first operand.

  • When you call x >>= y, Python first attempts to call x.__irshift__(y).
  • If this is not implemented, it tries the normal bitwise left-shift operation x.__rshift__(y).
  • If this is not implemented either, it tries reverse bitwise left-shift operation y.__rrshift__(x) with swapped operands.

The result is then assigned to the first operand x. If none of those operations is implemented, Python raises a TypeError.

We call this a “Dunder Method” for Double Underscore Method” (also called “magic method”). To get a list of all dunder methods with explanation, check out our dunder cheat sheet article on this blog.

Basic Example Overriding __irshift__

In the following code example, you create a class Data and define the magic method __irshift__(self, other).

  • The “self” argument is the default argument of each method and it refers to the object on which it is called—in our case, the first operand of the in-place operation.
  • The “other” argument of the in-place method refers to the second operand, i.e., y in the in-place operation x >>= y.

The return value of the operation returns a dummy string 'finxter 42' to be assigned to the first operand. In practice, this would be the result of the in-place bitwise right-shift operation.

class Data:
    def __irshift__(self, other):
        return 'finxter 42'


x = Data()
y = Data()

x >>= y

print(x)
# finxter 42

In-Place Right-Shift >> Without __irshift__()

To support in-place right-shift on a custom class, you don’t have to overwrite the in-place __irshift__() method. Because if the method is not defined, Python will fall back to the normal __rshift__() method and assign its result to the first operand.

Here’s an example:

class Data:
    def __rshift__(self, other):
        return 'finxter 42'


x = Data()
y = Data()

x >>= y

print(x)
# finxter 42

Even though the __irshift__() method is not defined, the in-place bitwise left-shift operation x >>= y still works due to the __rshift__() “fallback” magic method!

In-Place Bitwise Right-Shift Without __irshift__() and __rshift__()

To support in-place left-shift x >>= y on a custom class, you don’t even have to overwrite any of the x.__irshift__(y) or x.__rshift__(y) methods. If both are not defined, Python falls back to the reverse y.__rrshift__(x) method and assigns its result to the first operand.

Here’s an example where you create a custom class for the first operand that doesn’t support the bitwise right-shift operation. Then you define a custom class for the second operand that defines the __rrshift__() method. For the in-place operation, Python falls back to the __rrshift__() method defined on the second operand and assigns it to the first operand x:

class Data_1:
    pass

class Data_2:
    def __rrshift__(self, other):
        return 'finxter 42'

x = Data_1()
y = Data_2()

x >>= y

print(x)
# finxter 42

TypeError: unsupported operand type(s) for >>=

If you try to perform in-place multiplication x >>= y but neither x.__irshift__(y), nor x.__rshift__(y), nor y.__rrshift(x) is defined, Python raises a “TypeError: unsupported operand type(s) for >>=“. To fix this error, simply define any of those methods before performing the in-place operation.

class Data:
    pass


x = Data()
y = Data()

x >>= y

Output:

Traceback (most recent call last):
  File "C:UsersxcentDesktopcode.py", line 8, in <module>
    x >>= y
TypeError: unsupported operand type(s) for >>=: 'Data' and 'Data'

Background Bitwise Right-Shift

The Python bitwise right-shift operator x >> n shifts the binary representation of integer x by n positions to the right.

It inserts a 0 bit on the left and removes the right-most bit. For example, if you right-shift the binary representation 0101 by one position, you’d obtain 0010.

Semantically, the bitwise right-shift operator is the same as performing integer division by 2**n.

Python Bitwise Right-Shift >> Operator

You can find a full tutorial on bitwise right-shift (including video) here:

Related Video

References:

Where to Go From Here?

Enough theory. Let’s get some practice!

Coders get paid six figures and more because they can solve problems more effectively using machine intelligence and automation. To become more successful in coding, solve more real problems for real people. That’s how you polish the skills you really need in practice. After all, what’s the use of learning theory that nobody ever needs?

You build high-value coding skills by working on practical coding projects!

Do you want to stop learning with toy projects and focus on practical code projects that earn you money and solve real problems for people?

If your answer is YES!, consider becoming a Python freelance developer! It’s the best way of approaching the task of improving your Python skills—even if you are a complete beginner.

Join my free webinar “How to Build Your High-Income Skill Python” and watch how I grew my coding business online and how you can, too—from the comfort of your own home.

Join the free webinar now!