Why Should I Use NumPy?

Rate this post

NumPy is not the trendiest Python library in the world. There are libraries such as TensorFlow or Scikit-learn for machine learning. These libraries get all the attention these days.

However, in this article, I want to highlight the importance of learning the basics first. You cannot learn TensorFlow before you’ve learned Python. Similarly, you cannot master data science in Python without knowing NumPy.

Why Should I Use NumPy?

NumPy is at the heart of both data science and machine learning. Scikit-learn uses NumPy arrays. Pandas builds upon NumPy. TensorFlow uses NumPy operations not only for preprocessing. Matplotlib uses NumPy to create histograms, plot and shape data. No matter where you go in the data processing space, NumPy is already there.

With the growing importance of Python, it becomes more and more important for you to know NumPy. If you struggle with NumPy, then check out my book “Coffee Break NumPy” (link to my book page). It’s a fun way of improving your NumPy skills by solving rated Python puzzles.

So why should you learn NumPy? Because the most important major programming language for machine learning and data science heavily builds on NumPy. By mastering NumPy, everything becomes way easier in these hot new areas.

Leave a Comment