
Coffee Break Python

Slicing

Workouts to Master Slicing in
Python, Once and for All24

Coffee Break Python
Slicing

24 Workouts to Master Slicing
in Python, Once and For All

Christian Mayer

November 2018

A puzzle a day to learn, code, and play.

i

Contents

Contents ii

1 Introduction 1

2 How to Use This Book 7
2.1 What Is a Code Puzzle? . . . 8
2.2 Why Puzzle-based Learning? . 8

ii

2.3 How to Measure Your Python
Skills with This Book? 13

3 A Quick Overview of the Python
Language 23
3.1 Keywords 25
3.2 Basic Data Types 29
3.3 Complex Data Types 33
3.4 Classes 38
3.5 Functions and Tricks 42

4 Introduction to Slicing 47
4.1 Intermezzo: Indexing Basics . . 48
4.2 Slicing 49
4.3 The Step Size in Slicing 52
4.4 Overshooting Indices in Slicing 54
4.5 Summary Basic Python Slicing 56
4.6 Frequently Asked Questions . . 59

5 Code Puzzles Slicing 87

6 Final Remarks 101

1

Introduction

The main driver for mastery is neither a char-
acter trait nor talent. Mastery comes from
intense, structured training. The author Mal-
colm Gladwell formulated the famous rule of
10,000 hours based on research from psychol-
ogy and neurological science.1 The rule states

1Malcolm Gladwell Outliers: The Story of Success.

1

that if you have average talent, you will reach
mastery in any discipline by investing approx-
imately 10,000 hours of intense training. Bill
Gates, the founder of Microsoft, reached mas-
tery at a young age as a result of coding for
more than 10,000 hours. He was committed
and passionate about coding and worked long
nights to develop his skills.

If you are reading this book, you are an
aspiring coder and you seek ways to advance
your coding skills. You already have some
experience in writing code, but you feel that
there is a lot to be learned before you become
a master coder. You want to read and under-
stand code better. You want to challenge the
status quo that some of your peers understand
code faster than you. Or you are already profi-
cient with another programming language like
Java or C++ but want to learn Python to be-

come more valuable to the marketplace. Ei-
ther way, you have already proven your am-
bition to learn and, therefore, this book is for
you. To join the league of the great code mas-
ters, you only have to do one thing: stay in
the game.

There is one thing that will empower you
to invest the 10,000 hours of hard, focused
work to reach mastery. It’s your ambition
to learn that will drive you through the val-
leys of desperation on your path to mastery:
complex code, nasty bugs, and project man-
agers pushing tight deadlines. Nurturing your
ambition to learn will pay a rich stream of div-
idends to you and your family for as long as
you live.

This book aims to be a stepping stone on
your path to becoming a Python master. It fo-
cuses on one important subtopic of the Python

programming language: slicing. It offers you
five to ten hours of thorough Python train-
ing using a scientifically proven learning tech-
nique, called practice testing. Investing this
time will kickstart your skills to write, read,
and understand Python source code.

The learning system used in this book is
simple: you read the material from the first
to the last page. As you go along, you solve
code puzzles at various levels of difficulty. In
essence, you play Python interpreter and com-
pute the output of a code snippet in your
head. Then you check whether you were right—
using feedback and explanations—to adapt and
improve your coding skills over time. This sys-
tem has proven highly effective for teaching
more than 21,000 online students on my online
coding academy https://finxter.com.

https://finxter.com

Book Overview
Chapter 2 explains and motivates the advan-
tages of the Finxter method of puzzle-based
learning and shows how to use the chess rat-
ing method (Elo) to measure your Python skill
level. Chapter 3 gives you a quick overview
of the Python programming language. Chap-
ter 4 is an in-depth tutorial about slicing in
Python. Feel free to jump ahead and start
reading from this chapter, if you feel confi-
dent with Python and puzzle-based learning.
Chapter 5 strengthens your Python slicing skills
by posing you 11 extra Python puzzles. Fi-
nally, Chapter 6 concludes the book.

2

How to Use This Book

This chapter shows you how to read this book.
If you want to test your skill level to get an
accurate estimate of your Python skills com-
pared to others, read on. If you don’t, go di-
rectly to the introduction to slicing in Chap-
ter 4.

7

2.1 What Is a Code
Puzzle?

Definition: A code puzzle is an educative
snippet of source code that teaches a single
computer science concept by activating the
learner’s curiosity and involving them in the
learning process.

2.2 Why Puzzle-based
Learning?

There are 10 good reasons why puzzle-based
learning allows you to learn faster, smarter,
and better. These reasons are based on pub-
lished research in psychological science.

1. Overcome the Knowledge Gap.

If you solve a code puzzle, you want to
know whether your answer is correct.
You crave the correct solution and are
thus preparing your mind to fully absorb
it. Stretch your limits, overcome the
knowledge gap, and become better—one
puzzle at a time.

2. Embrace the Eureka Moment. To
reinforce fast learning, evolution created
a brilliant biological reaction. Your brain
releases endorphins, the moment you close
a knowledge gap. When solving a puz-
zle, you feel instant gratification. Learn-
ing becomes addictive—but this addic-
tion makes you smarter.

3. Divide and Conquer. Code puz-
zles break up the huge task of learning
to code into a series of smaller learning

units. The student experiences laser-
focused learning. Examples of such small
learning units are recursion, the for loop,
and keyword arguments. Each puzzle is
a step toward your bigger goal of master-
ing computer science. Keep solving puz-
zles and you keep improving your skills.

4. Improve From Immediate Feed-
back. To learn anything, you need feed-
back such that you can adapt your ac-
tions. Unconsciously, you will minimize
negative and maximize positive feedback.
This book offers you an environment with
immediate feedback to make learning to
code easy and fast.

5. Measure Your Skills. You can’t im-
prove what you can’t measure. The main
idea of this book, and the associated

learning app at https://finxter.com,
is to transfer the method of measuring
skills from chess to programming. By
knowing your skills, you always know
exactly where you stand on your path
to mastery.

6. Tailor Learning to You. Individu-
alized learning tailors the content, pace,
style, and technology of teaching to the
student’s skills and interests. Puzzle-
based learning is a perfect example of
automated, individualized learning. The
ideal puzzle stretches the student’s abili-
ties and is neither boring nor overwhelm-
ing.

7. Small is Beautiful. Puzzle-based learn-
ing breaks the bold goal, i.e., reach a
level of mastery in Python, into tiny

https://finxter.com

actionable steps. While solving the small
puzzles, you progress toward your larger
goal and eventually reach the mastery
level. A clear path to success.

8. Active Beats Passive Learning.
Puzzle-based learning is a variant of the
active learning technique known as prac-
tice testing. Practice testing is scientif-
ically proven to teach you more in less
time.

9. Make Source Code a First-class
Citizen. Puzzle-based learning is code-
centric. You will find yourself staring at
the code for a long time until the insight
strikes. Placing code to the center of the
learning process creates an environment
in which you will develop the powerful
intuition of the expert.

10. What You See Is All There Is. A
good code puzzle beyond the most basic
level is self-contained. You can solve it
purely by staring at it until your mind
follows your eyes—your mind develops
a solution based on rational thinking.
No need to use any other material than
what you already have: your brain.

2.3 How to Measure
Your Python Skills
with This Book?

The idea of our Python learning system is to
transfer the Elo rating from chess to program-
ming.

Let us give a small example of how the Elo
rating works in chess. Alice is a strong player

with an Elo rating of 2000 while Bob is an
intermediate player with Elo 1500. Say Alice
and Bob play a chess game against each other.
As Alice is the stronger player, she is expected
to win. The Elo rating system rewards play-
ers for good and punishes for bad results: the
better the result, the higher the reward. For
Bob, a win, or even a draw, would be a very
good outcome of the game. For Alice, the only
satisfying result is a win. Winning against a
weaker player is less rewarding than winning
against a stronger player. Thus, the Elo rating
system rewards Alice with only +3 Elo points
for a win. A loss costs her -37 Elo points,
and even a draw costs her -17 points. Playing
against a weaker player is risky for her because
she has much to lose but little to win.

The idea of Finxter is to view your learning
as a series of games between two players: you

and the Python puzzle. Both players have an
Elo rating. Your rating measures your current
skills and the puzzle’s rating reflects the diffi-
culty. On our website finxter.com, a puzzle
plays against hundreds of Finxter users. Over
time, the puzzle’s Elo rating converges to its
true difficulty level.

Table 2.1 shows the ranks for each Elo rat-
ing level. The table is an opportunity for you
to estimate your Python skill level. In the fol-
lowing, I describe how you can use this book
to test your Python skills.

This book provides a series of 28 code puz-
zles plus explanations to test and train your
Python slicing skills.

I recommend solving at least one or two
code puzzles at a casual moment every day,
e.g., while you drink your morning coffee. Then
you can spend the rest of your learning time on

finxter.com

Elo rating Rank
2500 World Class

2400-2500 Grandmaster
2300-2400 International Master
2200-2300 Master
2100-2200 National Master
2000-2100 Master Candidate
1900-2000 Authority
1800-1900 Professional
1700-1800 Expert
1600-1700 Experienced Intermediate
1500-1600 Intermediate
1400-1500 Experienced Learner
1300-1400 Learner
1200-1300 Scholar
1100-1200 Autodidact
1000-1100 Beginner
0-1000 Basic Knowledge

Table 2.1: Elo ratings and skill levels.

real projects that matter to you. The puzzles
guarantee that your skills improve over time,
while the real project will bring you results.

If you want to test your Python skills, use
the following simple method.

1. Select a daily trigger after which you
solve code puzzles for 10 minutes. For
example, decide on your Coffee Break
Python, or even solve code puzzles as
you brush your teeth or sit on the train
to work, university, or school.

2. Scan over the puzzle in a first quick pass
and ask yourself: what is the unique idea
of this puzzle?

3. Dive deeply into the code. Try to under-
stand the purpose of each symbol, even
if it seems trivial at first. Avoid being

shallow and lazy. Instead, solve each
puzzle thoroughly and take your time.
It’s counterintuitive: To learn faster in
less time, you must stay calm and take
your time and allow yourself to dig deep.
There are no shortcuts.

4. Make sure you carry a pen with you
and write your solution into the book.
This ensures that you stay objective—
we all have the tendency to fake our-
selves. Active learning is a central idea
of this book.

5. Look up the solution and read the expla-
nation with care. Do you understand ev-
ery aspect of the code? Write open ques-
tions down and look them up later, or
send them to me (info@finxter.com).
I will do everything I can to come up

info@finxter.com

with a good explanation.

6. Only if your solution was 100% correct—
including whitespaces, data types, and
formatting of the output—award your-
self with Elo points for this puzzle. Oth-
erwise, you should count it as an incor-
rect solution and swallow the negative
Elo points. The reason for this strict
rule is that this is the best way to train
yourself to solve the puzzles thoroughly.

7. Track your individual Elo rating as you
read the book and solve the code puz-
zles. Simply write your current Elo rat-
ing into the book. Start with an ini-
tial rating of 1000 if you are a begin-
ner, 1500 if you are an intermediate, and
2000 if you are an advanced Python pro-
grammer. Of course, if you already have

an online rating on https://finxter.
com, starting with this rating is the most
precise option.

8. If your solution is correct, add the Elo
points according to the table given with
the puzzle. Otherwise, subtract the given
Elo points from your current Elo num-
ber.

As you follow this simple training plan,
your skill to see through source code will im-
prove. Over the long haul, this will have a
huge impact on your career, income, and work
satisfaction. You do not have to invest much
time because the training plan requires only
10–20 minutes per day. But you must be per-
sistent in your training efforts. If you get off
track, get right back on track the next day.
When you run out of code puzzles, feel free to

https://finxter.com
https://finxter.com

check out https://finxter.com with more
than 300 hand-crafted code puzzles. I regu-
larly publish new code puzzles on the website
as well.

https://finxter.com

3

A Quick Overview of the
Python Language

Before diving into the puzzles, work through
the following five cheat sheets. The cheat
sheets are highly compressed. I always re-
fer to them as the 80/20 principle applied to
learning to code—learn 80% of the Python
language features in 20% of the learning time

23

(it would take you to acquire these features
browsing through the web). So they are def-
initely worth your time investment. This in-
troductory chapter is taken from my book1.

Learn them thoroughly. Try to understand
every single line of code. And catapult your
skills to the next level. Most Python coders
neglect to invest enough time in a thorough
and comprehensive understanding of the ba-
sics such as language features, data types, and
language tricks. Be different and absorb the
examples in each of the cheat sheets. Open
up your path to become a master coder and
join the top ten percent of coders.

You can download all five cheat sheets as
concise PDFs and post them on your wall until

1Coffee Break Python: 50 Workouts to Kickstart Your
Rapid Code Understanding in Python. If you don’t feel com-
fortable reading and understanding Python code fast, get the
book at http://bit.ly/coffee-break-python.

http://bit.ly/coffee-break-python

you know them by heart (https://bit.ly/
free-python-email-course).

3.1 Keywords

Each programming language reserves a special
meaning to a fixed set of words. These words
are called keywords. With keywords, the pro-
grammer can issue commands to the compiler
or interpreter. They let you tell the computer
what to do. Without keywords, the computer
could not make sense from the seemingly ran-
dom text in your code file. Note that as key-
words are reserved words, you cannot use them
as variable names.

The most important Python keywords are
the following:

https://bit.ly/free-python-email-course
https://bit.ly/free-python-email-course

False True and or
not break continue class
def if elif else
for while in is
None lambda return

The next cheat sheet explains these key-
words in detail. In each row, you can find
the keyword itself, a short description, and an
example of its usage.

Keyword Description Code example
False​,
True

Data values from the data
type Boolean

False​ == (​1 ​> ​2​)
True​ == (​2 ​> ​1​)

and​, ​or​,
not

Logical operators:
(x ​and​ y)​ → both x and y
must be True
(x ​or​ y)​ → either x or y
must be True
(​not​ x)​ → x must be False

x, y = ​True​, ​False
(x ​or​ y) == ​True

True

(x ​and​ y) == ​False

True

(​not​ y) == ​True

True

break Ends loop prematurely while​(​True​):
 ​break​ ​# no infinite loop
print(​"hello world"​)

continue Finishes current loop
iteration

while​(​True​):
 ​continue
 print(​"43"​) ​# dead code

class

def

Defines a new class → a
real-world concept (object
oriented programming)

Defines a new function or
class method. For latter, first
parameter ​self ​points to
the class object. When
calling a class method, the
first parameter is implicit.

class​ ​Beer​:

 ​def​ ​__init__​(self)​:
 self.content = ​1.0

 ​def​ ​drink​(self)​:
 self.content = ​0.0

constructor creates class

becks = Beer()

empty beer bottle

becks.drink()

if​,
elif​,

Conditional program
execution: program starts

x = int(input(​"your val: "​))
if​ x > ​3​: print(​"Big"​)

else with “if” branch, tries “elif”
branches, and finishes with
“else” branch (until one
evaluates to True).

elif​ x == ​3​: print(​"Medium"​)
else​: print(​"Small"​)

for​,
while

For loop

declaration

for​ i ​in​ [​0​,​1​,​2​]:
 print(i)

While loop - same

semantics

j = ​0
while​ j < ​3​:
 print(j)

 j = j + ​1

in Checks whether element is
in sequence

42​ ​in​ [​2​, ​39​, ​42​] ​# True

is Checks whether both
elements point to the same
object

y = x = 3

x​ ​is​ ​y​ ​# True
[​3​] ​is​ [​3​] ​# False

None Empty value constant def​ ​f​()​:
 x = ​2
f() ​is​ ​None​ ​# True

lambda Function with no name
(anonymous)

(lambda​ x: x + ​3)(3)​ ​#
returns 6

return Terminates function
execution and passes the
execution flow to the caller.
An optional value after the
return keyword specifies the
result.

def​ ​incrementor​(x)​:
 ​return​ x + ​1
incrementor(​4​) ​# returns 5

3.2 Basic Data Types

Many programmers know basic data types as
primitive data types. They provide the prim-
itives on which higher-level concepts are built.
A house is built from bricks. Likewise, a com-
plex data type is built from basic data types.
I introduce basic data types in the next cheat
sheet and complex data types in Section 3.3.

Specifically, the next cheat sheet explains
the three most important (classes of) basic
data types in Python. First, the Boolean
data type encodes truth values. For exam-
ple, the expression 42 > 3 evaluates to True
and 1 ∈ {2, 4, 6} evaluates to False. Second,
the numerical types integer, float, and com-
plex numbers encode integer values, floating
point values, and complex values, respectively.
For example, 41 is an integer value, 41.99 is

a float value, and 41.999 + 0.1 ∗ i is a com-
plex value (the first part of the equation being
the real number and the second the imaginary
number). Third, the string datatype encodes
textual data. An example of a string value
is the Shakespeare quote 'Give every man
thy ear, but few thy voice'.

Data Type + Description Example

Boolean
The Boolean data type is a
truth value, either ​True​ ​or
False​.

These are important Boolean
operators ordered by priority
(from highest to lowest):
not​ x​ →
“if x is False, then x, else y”

x ​and​ y​ →
“if x is False, then x, else y”

x ​or​ y ​ →
“if x is False, then y, else x”

x, y = ​True​, ​False
print(x ​and​ ​not​ y) ​# True
print(​not​ x ​and​ y ​or​ x) ​# True

All of those evaluate to False

if​ (​None​ ​or​ ​0​ ​or​ ​0.0​ ​or​ ​''​ ​or​ []
 ​or​ {} ​or​ set()):
 print(​"Dead code"​)

All of those evaluate to True

if​ (​1​ < ​2​ ​and​ ​3​ > ​2​ ​and​ ​2​ >=​2
 ​and​ ​1​ == ​1​ ​and​ ​1​ != ​0​):
 print(​"True"​)

Integer
An integer is a positive or
negative number without
floating point (e.g. ​3​).

Float
A float is a positive or
negative number with floating
point precision (e.g.
3.14159265359​).

The ‘​//​’ operator performs
integer division. The result is
an integer value that is
rounded towards the smaller
integer number (e.g. ​3​ // ​2
== ​1​).

Arithmetic Operations

x, y = ​3​, ​2
print(x + y) ​# = 5
print(x - y) ​# = 1
print(x * y) ​# = 6
print(x / y) ​# = 1.5
print(x // y) ​# = 1
print(x % y) ​# = 1s
print(-x) ​# = -3
print(abs(-x)) ​# = 3
print(int(​3.9​)) ​# = 3
print(float(​3​)) ​# = 3.0
print(x ** y) ​# = 9

String
Python Strings are sequences
of characters. They are
immutable which means that
you can not alter the
characters without creating a
new string.

The four main ways to create
strings are the following.

1. Single quotes
'Yes'

2. Double quotes
"Yes"

3. Triple quotes (multi-line)
"""Yes

We Can"""

4. String method
str(​5​) == ​'5'​ ​# True
5. Concatenation
"Ma"​ + ​"hatma"​ ​#
'Mahatma'

These are whitespace
characters in strings.

● Newline ​\n
● Space ​\s
● Tab ​\t

Indexing & Slicing

s = ​"The youngest pope was 11 years
old"

print(s[​0​]) ​# 'T'
print(s[​1​:​3​]) ​# 'he'
print(s[​-3​:​-1​]) ​# 'ol'
print(s[​-3​:]) ​# 'old'
x = s.split() ​# string array
print(x[​-3​] + ​" "​ + x[​-1​] + ​" "​ +
x[​2​] + ​"s"​) ​# '11 old popes'

Key String Methods

y = ​" This is lazy\t\n"
print(y.strip()) ​# 'This is lazy'
print(​"DrDre"​.lower()) ​# 'drdre'
print(​"stop"​.upper()) ​# 'STOP'
s = ​"smartphone"
print(s.startswith(​"smart"​)) ​# True
print(s.endswith(​"phone"​)) ​# True
print(​"another"​.find(​"other"​)) ​# 2
print(​"cheat"​.replace(​"ch"​, ​"m"​))
'meat'

print(​','​.join([​"F"​, ​"B"​, ​"I"​]))
'F,B,I'

print(len(​"Rumpelstiltskin"​)) ​# 15
print(​"ear"​ ​in​ ​"earth"​) ​# True

3.3 Complex Data
Types

In the previous section, you learned about ba-
sic data types. These are the building blocks
for complex data types. Think of complex
data types as containers—each holding a mul-
titude of (potentially different) data types.

Specifically, the complex data types in this
cheat sheet are lists, sets, and dictionaries. A
list is an ordered sequence of data values (that
can be either basic or complex data types).
An example for such an ordered sequence is
the list of all US presidents:
['Washington',
'Adams',
'Jefferson', ...,
'Obama',
'Trump'].

In contrast, a set is an unordered sequence
of data values:
{ 'Trump',
'Washington',
'Jefferson', ...,
'Obama'}.

Expressing the US presidents as a set loses
all ordering information—it’s not a sequence
anymore. But sets do have an advantage over
lists. Retrieving information about particular
data values in the set is much faster. For in-
stance, checking whether the string 'Obama'
is in the set of US presidents is blazingly fast
even for large sets. I provide the most impor-
tant methods and ideas in the following cheat
sheet.

Complex Data Type +
Description

Example

List
A container data type
that stores a sequence of
elements. Unlike strings,
lists are mutable:
modification possible.

l = [​1​, ​2​, ​2​]
print(len(l)) ​# 3

Adding elements
to a list with append,
insert, or list
concatenation. The
append operation is
fastest.

[​1​, ​2​, ​2​].append(​4​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​4​].insert(​2​,​2​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​2​] + [​4​] ​# [1, 2, 2, 4]

Removing elements
is slower (find it first).

[​1​, ​2​, ​2​, ​4​].remove(​1​) ​# [2, 2, 4]

Reversing
the order of elements.

[​1​, ​2​, ​3​].reverse() ​# [3, 2, 1]

Sorting a list
Slow for large lists: O(n
log n), n list elements.

[​2​, ​4​, ​2​].sort() ​# [2, 2, 4]

Indexing
Finds index of the first
occurence of an element
in the list. Is slow when
traversing the whole list.

[​2​, ​2​, ​4​].index(​2​)
index of element 4 is "0"

[​2​, ​2​, ​4​].index(​2​,​1​)
index of el. 2 after pos 1 is "1"

Stack
Python lists can be used
intuitively as stack via
the two list operations
append() and pop().

stack = [3]

stack.append(​42​) ​# [3, 42]
stack.pop() ​# 42 (stack: [3])
stack.pop() ​# 3 (stack: []​)

Set basket = {​'apple'​, ​'eggs'​,
 ​'banana'​, ​'orange'​}

Unordered collection of
unique elements
(​at-most-once​).

same = set([​'apple'​, ​'eggs'​,
 ​'banana'​, ​'orange'​])
print(basket == same) ​# True

Dictionary
A useful data structure
for storing (key, value)
pairs.

calories = {​'apple'​ : ​52​,
 'banana'​ : ​89​,
 'choco'​ : ​546​}

Reading and writing
Read and write elements
by specifying the key
within the brackets. Use
the keys() and values()
functions to access all
keys and values of the
dictionary.

c = calories

print(c[​'apple'​] < c[​'choco'​]) ​# True
c[​'cappu'​] = ​74
print(c[​'banana'​] < c[​'cappu'​]) ​# False
print(​'apple'​ ​in​ c.keys()) ​# True
print(​52​ ​in​ c.values()) ​# True

Dictionary Looping
You can access the (key,
value) pairs of a
dictionary with the
items()​ method.

for​ k, v ​in​ calories.items():
print(k) ​if​ v > ​500​ ​else​ ​None

'chocolate'

Membership operator
Check with the keyword
in​ ​whether the set, list,
or dictionary contains an
element. Set
containment is faster
than list containment.

basket = {​'apple'​, ​'eggs'​,
 'banana'​, ​'orange'​}
print(​'eggs'​ ​in​ basket} ​# True
print(​'mushroom'​ ​in​ basket} ​# False

List and Set
Comprehension
List comprehension is
the concise Python way
to create lists. Use
brackets plus an
expression, followed by
a for clause. Close with

List comprehension

[(​'Hi '​ + x) ​for​ x ​in​ [​'Alice'​, ​'Bob'​,
'Pete'​]]
['Hi Alice', 'Hi Bob', 'Hi Pete']

[x * y ​for​ x ​in​ range(​3​) ​for​ y ​in
range(​3​) ​if​ x>y]
[0, 0, 2]

zero or more for or if
clauses.

Set comprehension is
similar to list
comprehension.

Set comprehension

squares = { x**​2​ ​for​ x ​in​ [​0​,​2​,​4​] ​if​ x
< ​4​ } ​# {0, 4}

3.4 Classes

Object-oriented programming is an influen-
tial, powerful, and expressive programming
abstraction. The programmer thinks in terms
of classes and objects. A class is a blueprint
for an object. An object contains specific data
and provides the functionality specified in the
class.

Suppose you are programming a game to
let you build, simulate, and grow cities. In
object-oriented programming, you represent
all things (buildings, persons, or cars) as ob-
jects. For example, each building object stores
data such as name, size, and price tag. Addi-
tionally, each building provides a defined func-
tionality such as get_monthly_earnings().
This simplifies reading and understanding your
code for other programmers. Even more im-

portant, you can now easily divide responsi-
bilities. You code the buildings and your col-
league codes the moving cars.

In short, object-oriented programming helps
you to write readable code. By learning object
orientation, your skill of collaborating with
others on complex problems improves. The
next cheat sheet introduces the most basic
concepts.

3.5 Functions and
Tricks

Python is full of extra tricks and special func-
tionality. Learning these tricks makes you
more efficient and productive. But more im-
portantly, these tricks make programming easy
and fun. In the next cheat sheet, I give you
the most important ones.

ADVANCED FUNCTIONS

map(func, iter)
Executes the function on all elements of the iterable. Example:
list(map(​lambda​ x: x[​0​], [​'red'​, ​'green'​, ​'blue'​]))
Result: ['r', 'g', 'b']

map(func, i1, ..., ik)

Executes the function on all k elements of the k iterables. Example:
list(map(​lambda​ x, y: str(x) + ​' '​ + y + ​'s'​ , [​0​, ​2​, ​2​],
[​'apple'​, ​'orange'​, ​'banana'​]))
Result: ['0 apples', '2 oranges', '2 bananas']

string.join(iter)

Concatenates iterable elements separated by ​string​. Example:
' marries '​.join(list([​'Alice'​, ​'Bob'​]))
Result: 'Alice marries Bob'

filter(func, iterable)

Filters out elements in iterable for which function returns False (or 0). Example:
list(filter(​lambda​ x: ​True​ ​if​ x>​17​ ​else​ ​False​, [​1​, ​15​, ​17​,
18​])) ​# Result: [18]

string.strip()

Removes leading and trailing whitespaces of string. Example:
print(​"\n \t 42 \t "​.strip()) ​# Result: 42

sorted(iter)

Sorts iterable in ascending order. Example:
sorted([​8​, ​3​, ​2​, ​42​, ​5​]) ​# Result: [2, 3, 5, 8, 42]

sorted(iter, key=key)

Sorts according to the key function in ascending order. Example:
sorted([​8​, ​3​, ​2​, ​42​, ​5​], key=​lambda​ x: ​0​ ​if​ x==​42​ ​else​ x)
[42, 2, 3, 5, 8]

help(func)

Returns documentation of func. Example:

help(str.upper()) ​# Result: '... to uppercase.'

zip(i1, i2, ...)

Groups the i-th elements of iterators i1, i2, … together. Example:
list(zip([​'Alice'​, ​'Anna'​], [​'Bob'​, ​'Jon'​, ​'Frank'​]))
Result: [('Alice', 'Bob'), ('Anna', 'Jon')]

Unzip
Equal to: 1) unpack the zipped list, 2) zip the result. Example:
list(zip(*[(​'Alice'​, ​'Bob'​), (​'Anna'​, ​'Jon'​)]
Result: [('Alice', 'Anna'), ('Bob', 'Jon')]

enumerate(iter)

Assigns a counter value to each element of the iterable. Example:
list(enumerate([​'Alice'​, ​'Bob'​, ​'Jon'​]))
Result: [(0, 'Alice'), (1, 'Bob'), (2, 'Jon')]

TRICKS

python -m http.server <P>
Want to share files between your PC and your phone? Run this command in
your PC’s shell. <P> is any port number between 0–65535. Type < IP address
of PC>:<P> in the phone’s browser. Now, you can browse the files in the PC’s
directory.

Read comic
import​ antigravity
Opens the comic series xkcd in your web browser

Zen of Python
import​ this
'...Beautiful is better than ugly. Explicit is ...'

Swapping variables
This is a breeze in Python. No offense, Java! Example:
a, b = ​'Jane'​, ​'Alice'
a, b = b, a

Result: a = 'Alice', b = 'Jane'

Unpacking arguments
Use a sequence as function arguments via asterisk operator *. Use a dictionary
(key, value) via double asterisk operator **. Example:
def​ ​f​(x, y, z)​:
 ​return​ x + y * z
f(*[​1​, ​3​, ​4​]) ​# 13
f(**{​'z'​ : ​4​, ​'x'​ : ​1​, ​'y'​ : ​3​}) ​# 13

Extended Unpacking
Use unpacking for multiple assignment feature in Python. Example:
a, *b = [​1​, ​2​, ​3​, ​4​, ​5​]
Result: a = 1, b = [2, 3, 4, 5]

Merge two dictionaries
Use unpacking to merge two dictionaries into a single one. Example:
x={​'Alice'​ : ​18​}
y={​'Bob'​ : ​27​, ​'Ann'​ : ​22​}
z = {**x,**y}

Result: z = {'Alice': 18, 'Bob': 27, 'Ann': 22}

4

Introduction to Slicing in
Python

Slicing is a Python-specific concept for carving
out a range of values from sequence types such
as lists or strings.

It is one of the most popular Python fea-
tures. To master Python, you must master
slicing first. Any non-trivial Python code base

47

relies on slicing. In other words, the time you
invest now in mastering slicing will be repaid
a hundredfold during your career.

4.1 Intermezzo:
Indexing Basics

To bring everybody on the same page, let me
quickly introduce indexing in Python. Each
Python sequence object (e.g. strings, lists, tu-
ples) consists of a number of elements. You
access each element in the sequence via its
index. Each position in the sequence has a
unique index. The first element of the se-
quence has index 0. The second element of
the sequence has index 1. And the i-th ele-
ment of the sequence has index i-1. The in-
dices of any sequence s start at position 0 and
end in position len(s)-1.

Let’s dive into an example. Suppose, you
have a string universe. What are the indices
in this example? The indices are simply the
positions of the characters of this string.

Index 0 1 2 3 4 5 6 7
Character u n i v e r s e

The first character has index 0, the second
character has index 1, and the i-th character
has index i-1.

4.2 Slicing
The idea of slicing is simple. You carve out a
subsequence (called a slice) from a sequence
by defining the start and end indices. While
indexing retrieves only a single element, slic-
ing retrieves a whole subsequence within an
index range.

Use the bracket notation for slicing with
the start and end position identifiers. For ex-
ample, word[i:j] returns the substring starting
from index i (included) and ending in index j
(excluded). But be cautious! Forgetting that
the end index is excluded is a common source
of bugs.

Based on this information, can you solve
the first code puzzle?

#############################
Puzzle 1
Level: Easy
Elo +10 / -10
#############################

x = 'universe'
print(x[2:4])

Puzzle 1: What is the output of
this code puzzle?

The following table gives the resulting slice
in bold. It starts with the start index 2 (in-
clusive) and ends with the end index 4 (ex-
clusive). This means that the character with
index 4, i.e., character e, is not part of the
resulting slice. The solution of this puzzle is
the substring iv.

If you solved this puzzle correctly, you get
ten experience points (+10 Elo), otherwise,
you lose ten experience points (-10 Elo). In
the latter case, your current experience level
would be -10 Elo. Track your experience level
as you proceed with the book.

Index 0 1 2 3 4 5 6 7
Character u n i v e r s e

4.3 The Step Size in
Slicing

For the sake of completeness, let me explain
the advanced slicing notation consisting of three
arguments [start:end:step]. The only dif-
ference to the previous notation is that it al-
lows you to specify the step size as well. For
example, the command 'python'[:5:2] re-
turns every second character up to the fourth
character, i.e., the string 'pto'.

With this information, you should now be
able to solve the following puzzle.

#############################
Puzzle 2
Level: Easy
Elo +10 / -10
#############################

x = 'universe'
print(x[2::2])

Puzzle 2: What is the output of
this code puzzle?

The following table shows the selected slice
indices in bold. The slice begins with the start
index 2. Then, it adds every second index in
the slice. Thus, the solution of this puzzle is
the substring ies.

Index 0 1 2 3 4 5 6 7
Character u n i v e r s e

4.4 Overshooting
Indices in Slicing

Slicing is robust even if the end index shoots
over the maximal sequence index. Just re-
member that nothing unexpected happens if
slicing overshoots sequence indices. Here is
a code puzzle that exemplifies this behavior.
Can you solve it?

#############################
Puzzle 3
Level: Easy
Elo +10 / -10
#############################

word = "galaxy"
print(word[4:50])

Puzzle 3: What is the output of
this code puzzle?

Again, you can find the selected slice in-
dices in the following table. Note that the
end index is 50, which is much larger than
the maximal index 5 of the string 'galaxy'.
Thus, all impossible indices are simply ig-
nored by the interpreter. The correct solution
is the substring xy.

Index 0 1 2 3 4 5
Character g a l a x y

4.5 Summary Basic
Python Slicing

Short recap – the slice notation s[start:end:step]
carves out a substring from s. The substring
consists of all characters between the two char-
acters at the start index (inclusive) and the
end index (exclusive). An optional step size

indicates how many characters are left out
from the original sequence. Here is an exam-
ple:

#############################
Puzzle 4
Level: Easy
XP +10 /- 10
#############################

s = 'sunshine'
print(s[1:5:2] + s[1:5:1])

Puzzle 4: What is the output of
this code puzzle?

In the following table, you can find both
slices and how they emerged from the original
string 'sunshine'. The first slice consists of
every other character between the start index
1 and end index 5 (excluded). The second
slice consists of all characters between those
start and end indices. The resulting string is a
simple concatenation of these two substrings
as indicated by the context-sensitive + oper-
ator. Therefore, the solution is the substring
usunsh.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
s u n s h i n e s u n s h i n e

4.6 Frequently Asked
Questions

Let’s dive deeper into slicing to make sure that
you fully understand it.

I have searched Quora to find all the little
problems new Python coders are facing with
slicing. I will answer six common questions
next.

What does it mean to skip
slicing indices (e.g. s[::2])?
The Python interpreter assumes certain de-
fault values for s[start:stop:step]. You
can tell the interpreter to use the default val-
ues by simply skipping the value(s) before (and
after) the colon :. At the first glance, such
code may look a bit awkward. Don’t worry,

you will get used to this more dense notation.
So what are the default values assumed by

the interpreter? For the most simple cases, the
default values are start=0, stop=len(s),
and step=1. You would write those same de-
fault values in the slice notation as follows:
s[::]==s[0:len(s):1]).

The next puzzle contains the three basic
cases of skipping indices while assuming (de-
fault) step size 1.

#############################
Puzzle 5
Level: Easy
Elo +10 / -10
#############################

word = "galaxy"
print(word[:-2] + word[4:])
print(word[:])

Puzzle 5: What is the output of

this code puzzle?

In this example, we obtain three slices from
the original string galaxy. The first slice
carves out a substring starting from the de-
fault index 0 and ending in the second last
character with index -2 (exclusive). (A nega-
tive index means that you start counting from
the right, so that the index -1 refers to the
last element.) The second slice carves out a
substring starting from index 4 and ending in
the default end index len('galaxy') == 6.
The third string assumes both default indices
0 and 6 — so it basically retrieves a copy of the
original string. As the first and second slices
are concatenated, the solution of this puzzle is
two times galaxy in the first and the second
line of the output.

When to use the single colon
notation (e.g. s[:]) and when
double colon notation (e.g.
s[::2])?
A single colon (e.g. s[1:2]) allows for two
arguments, the start and the end index. A
double colon (e.g. s[1:2:2]) allows for three
arguments, the start index, the end index, and
the step size. Only if the step size is set to
the default value 1, should you use the single
colon notation for brevity. In all other cases,
you have to use the double colon notation in
order to specify the step size.

#############################
Puzzle 6
Level: Easy
Elo +10 / -10
#############################

word = "O brother where art thou?"
print(word[::])
print(word[::1])
print(word[:])

Puzzle 6: Two out of three slice
versions are considered as bad style.
Which of them?

The puzzle contains three different slices.
Each produces the same result—the original
string O brother where art though? But
the first two slices are considered bad style.
Why? Because they contain redundant in-
formation. The first version has a redundant
colon. The second version is even worse as it
contains not only a redundant colon, but also
a redundant default value. As a rule of thumb,
you should always avoid redundant code.

What does a negative step
size mean (e.g. s[5:1:-1])?
This is an interesting feature in Python. A
negative step size indicates that we are not
slicing from left to right, but from right to
left. Hence, the start index should be larger
than or equal to the end index (otherwise, the

resulting sequence is empty). This is handy if
you want to reverse the order of sequences.

#############################
Puzzle 7
Level: Intermediate
Elo +10 / -10
#############################

word = "O brother where art thou?"
print(word[9:1:-1][::-1])

Puzzle 7: What’s the output of
this code snippet?

In this puzzle, we apply the slicing opera-
tor with negative step size -1 twice. First, we
cut out a slice starting from index 9 (inclu-
sive) and ending in index 1 (exclusive). Note
that this creates a new string with reversed
order of characters with respect to the orig-
inal string. The result of the first slice op-
erations is, therefore, the string 'rehtorb'.
Second, we reverse the order of characters of
this resulting substring again while assuming
the default indices. Hence, the final result of
the puzzle is 'brother'. Congratulations, if
you managed to solve this puzzle correctly!

What are the default indices
when using a negative step
size (e.g. s[::-1])?
If you followed the above explanations very
carefully, you might have realized that the de-
fault handling of indices has to be different
when using a negative step size.

To recap, these are the default values for
the slice [start:end:step]:

• start = 0,

• end = len(s), and

• step = 1.

However, if we assume negative step size,
these default values do not make a lot of sense
because the default behavior should be to slice
from the last to the first index.

Thus, the default indices in this case are
not start = 0 and end = len(s) but the
other way round:

• start = len(s) - 1 and

• end = -len(word) - 1.

Why does the end index have a value of
-len(word)-1? The reason is that the start
index is still included and the end index still
excluded from the slice. Only if the end index
is smaller than the value -len(word) do we
actually slice all the way to the first sequence
element (inclusive).

#############################
Puzzle 8
Level: Hard
Elo +40 / -10
#############################

word = "you shall not pass!"
print(word[len(word):0:-1] == word[::-1])
print(word[len(word)-1:-len(word)-1:-1] ==

word[::-1])↪→

Puzzle 8: What’s the output of
this code snippet?

This puzzle shows you the default indexing
for negative slices.

Seemingly, the first slice word[len(word):0:-1]
produces the same slice as when assuming the
default indices. This is not the case. The rea-
son is simple: the end index 0 is exclusive:
it’s not included in the final result. Hence,
the result of word[len(word):0:-1] is the
string '!ssap ton llahs uo' missing the
first character 'y' from the original string.

In contrast to that does the second slice
produce the same string as the default op-
eration word[::-1]. It starts from the last
index of the string len(word)-1 (inclusive),
and slices len(word)+1 characters to the left
(because of the equation -len(word)-1 ==
-(len(word)+1)).

If you solved this advanced puzzle, con-
sider yourself a master slicer!

We have seen many examples
for string slicing. How does
list slicing work?
Slicing works the same for all sequence types
(e.g., lists, strings, tuples). For lists, consider
the following example:

#############################
Puzzle 9
Level: Easy
Elo +10 / -10
#############################

l = [1, 2, 3, 4]
print(l[2:])
print(l[::-2])

Puzzle 9: What is the output of
this code puzzle?

The first line of the puzzle generates a list
starting from index 2 and slicing all the way
to the end of the list. Hence, the result is the
sublist [3, 4].

The second line of the puzzle generates a
list with reversed order of the sequence ele-
ments. However, as the step size is set to the
value -2, only every second element is taken
from the string. Hence, the slice operation
generates the list [4, 2].

Why is the last index
excluded from the slice?
This question goes well beyond the topic of
slicing with Python. In Python, as in many
other programming languages when defining
an interval [start:end], the end index is
not included in the subsequence.

The last index is excluded from the slice
because of language consistency, e.g. the range
function also does not include the end index.

It makes sense to exclude the main index
because of clarity. Try not to think about the
following question. Answer it immediately to
see what your intuition tells you. How many
sequence elements are in the sequence interval
[x,x+k]? Exactly, k elements!

Now suppose, we included the end index
here. In this case, the total length of the se-
quence interval would be k + 1 characters.
This would be very counter-intuitive.

#############################
Puzzle 10
Level: Easy
Elo +10 /- 10
#############################

customer_name = 'Hubert'

k = 3 # maximal size of database entry
x = 1 # offset
db_name = customer_name[x:x+k]
print(db_name)

Puzzle 10: What’s the output of
this puzzle?

This puzzle exemplifies the above expla-
nations. Suppose a database key is allowed
to have only three characters, i.e., k + 1. We
create a new variable with name db_name. By
specifying the offset x and the maximal size of
the database entry k, we can easily obtain a
correctly sized subsequence via the slice oper-
ation customer_name[x:x+k]. The result is
the string literal 'ube'.

Is the slice substring an alias
of the original substring (i.e.,
does the resulting object refer
to the same object in
memory)?
In general, this is not the case. Strings are im-
mutable objects in Python—they cannot be
changed. Thus, if you apply the slice opera-

tion to a string, the interpreter will create a
new string.

The same holds for lists: slicing creates a
copy of the list. So if you modify a sliced copy,
you do not have to worry about accidentally
modifying the original sequence. With this
information, you should be able to solve the
following puzzle.

#############################
Puzzle 11
Level: Intermediate
Elo +20 / -10
#############################

presidents = ['Obama',
'Trump',
'Washington']

p2 = presidents[:2]
p2.remove('Trump')
print(presidents)

Puzzle 11: What’s the output?

The following visualization shows which
objects are created by the Python interpreter
when executing the code in the puzzle (gen-
erated with the excellent tool http://www.
pythontutor.com/ from Philip Guo).

The first graphic shows the situation after
executing line 4 in the code. The two names
presidents and p2 do refer to different list
objects. The list p2 is shorter because of the
selection of the slice indices in line 4.

The second graphic shows the situation af-
ter executing line 5 of the code. Still, both
names refer to different objects. Thus, remov-
ing the string 'Trump' from the list object
referred by the name p2 has no effect on the

http://www.pythontutor.com/
http://www.pythontutor.com/

list object referred by the name presidents.

How does slice assignment
work?
We have seen many examples of the following
type: carving out a substring of an original
string by using the slice operation:
s[start:stop:end].

However, there is also another interesting
application of slicing in Python that arises
quite frequently in practical code bases: slice
assignments. Do not confuse slicing and slice
assignments as they are two different opera-
tions!

Slicing in the form of y = x[start:stop]
creates a new string from the original string x
and assigns it to the name y.

In contrast to that, slice assignments have
the form x[start:stop] = y. It replaces
parts of the original string x by the string y.
In other words, the string literal y conceptu-
ally overwrites the selected slice in x. List
slicing works in a similar way.

Here is a puzzle testing your understand-
ing of slice assignments.

#############################
Puzzle 12
Level: Intermediate
Elo +20 / -10
#############################

l = [1, 2, 3, 4, 5]
l[:3] = [42, 41]
print(l)

Puzzle 12: What’s the output of
this puzzle?

The first line of the puzzle creates a new
list with values between 1 and 5 (inclusive).
Note that we could have also used the expres-
sion list(range(6)) to achieve the same re-
sult.

In the second line, we use slice assignment
to replace the first three list elements with the
new list [42, 41]. In general, we select an
arbitrary combination of elements via slicing
on the left-hand side of the equation. Then,
we create an arbitrary sequence right-hand
side of the equation by which we replace the
selected items. Note that in this basic case,
the sequence on the left-hand side can even
be smaller (or larger) than the selected right-
hand side. Hence, the result of this puzzle is
the list [42, 41, 4, 5].

To dive a bit deeper into slice assignments
for lists, let’s have a look at another example.

In the last paragraph, I have indicated that
the left-hand side and the right-hand side of
the equation can have a different number of
elements. This only makes sense if we use sub-
sequence list elements that can be replaced. If
we use extended slicing with a non-standard
step size (e.g., s[::2]), the Python inter-
preter cannot decide anymore where to put
the remaining elements (in case the right-hand
side has more elements). Therefore, for ex-
tended slicing, Python assumes the same num-
ber of elements for the left-hand side and the
right-hand side. If the number of elements
is different, the Python interpreter will throw
an exception such as ValueError: attempt to
assign sequence of size 2 to extended slice
of size 3.

Now you should be able to solve the fol-
lowing puzzle.

#############################
Puzzle 13
Level: Intermediate
Elo +20 / -10
#############################

l = [1, 2, 3, 4, 5]
l[::2] = [42, 41]
print(l)

Puzzle 13: What’s the output of
this puzzle?

Well done, if you saw that this leads to
a ValueError as discussed above. The ex-
tended slice selects three elements but we try
to replace it with only two elements.

Can you use slice assignments
for strings?
No. In contrast to lists, strings are immutable
data types. In other words, strings cannot
be changed after they are created. But the
semantics of slice assignments is to replace a
slice of the original sequence. Due to the im-
mutability, Python cannot replace any part of
the original string. Therefore, it throws an er-
ror when you attempt to do slice assignments
for strings.

5

Code Puzzles Slicing

In the previous chapters, we have introduced
slicing in depth and revisited the Python ba-
sics.

Now take your pen, fill your cup of cof-
fee, and let’s dive into the 11 code puzzles in
the book. The puzzles are very basic in the
beginning but become harder as you proceed.

87

Again, take your time and try to understand
each line before you move on to the next puz-
zle.

#############################
Puzzle 14
Level: Intermediate
XP +20 / -10
#############################

Shakespeare:
s = "All that glitters is not gold"
print(s[9:-9])
print(s[::10])
print(s[:-4:-1])

Puzzle 14: What’s the output of
this puzzle?

The result of the first print statement is
'glitters is'. The result of the second
slice operation is the new string 'Al'. The
result of the third slice operation is the new
string 'dlo'.

#############################
Puzzle 15
Level: Easy
Elo +10 / -10
#############################

x = list('universe')
print(x)
print(x[2:4])

Puzzle 15: What is the output of
this code puzzle?

The solution of this puzzle is the list ['i',
'v'].

#############################
Puzzle 16
Level: Easy
Elo +10 / -10
#############################

l = ['u', 'n', 'i', 'v', 'e', 'r', 's', 'e']
print(l[2::2])

Puzzle 16: What is the output of
this code puzzle?

The solution of this puzzle is the new list
['i', 'e', 's'].

#############################
Puzzle 17
Level: Easy
Elo +10 / -10
#############################

word = list("galaxy")
print(word[4:50])

Puzzle 17: What is the output of
this code puzzle?

The correct solution is the new list ['x',
'y'].

#############################
Puzzle 18
Level: Easy
Elo +10 / -10
#############################

lst = list(range(10))
print(lst[1:5:2] + lst[1:5:1])

Puzzle 18: What is the output of
this code puzzle?

The solution is the list [1, 3, 1, 2, 3,
4].

#############################
Puzzle 19
Level: Easy
Elo +10 / -10
#############################

lst = [2, 4, 6, 8, 10, 12]
print(lst[:-2] + lst[4:])
print(lst[:])

Puzzle 19: What is the output of
this code puzzle?

The solution of this puzzle is two times
[2, 4, 6, 8, 10, 12] in the first and the
second line of the output.

#############################
Puzzle 20
Level: Easy
Elo +10 / -10
#############################

lst = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
print(lst[::])
print(lst[::1])
print(lst[:])

Puzzle 20: Two out of three slicing
statements in the puzzle are consid-
ered bad style. Which of them?

The result is [10, 9, 8, 7, 6, 5, 4,
3, 2, 1] for all three versions. But the first
two versions are bad programming style due
to the code redundancy.

#############################
Puzzle 21
Level: Intermediate
Elo +10 / -10
#############################

word = list(range(10))
print(word[9:1:-1][::-1])

Puzzle 21: What’s the output of
this code snippet?

The final result of the puzzle is [2, 3,
4, 5, 6, 7, 8, 9].

#############################
Puzzle 22
Level: Hard
Elo +40 / -10
#############################

word = [0, 3, 7, 10, 13]
print(word[len(word):0:-1] == word[::-1])
print(word[len(word)-1:-len(word)-1:-1] ==

word[::-1])↪→

Puzzle 22: What’s the output of
this code snippet?

The result of this puzzle is False in the
first line and True in the second line of the
output.

#############################
Puzzle 23
Level: Easy
XP +10 /- 10
#############################

lst = [1, 2, 3, 4, 5]
k = 3
x = 1
print(lst[x:x+k])

Puzzle 23: What’s the output of
this puzzle?

The result is the new list [2, 3, 4].

#############################
Puzzle 24
Level: Intermediate
Elo +20 / -10
#############################

l = [1, 2, 3, 4, 5]
l[2:3] = [42, 41]
print(l)

Puzzle 24: What’s the output of
this puzzle?

The result of this puzzle is the new list [1,
2, 42, 41, 4, 5].

6

Final Remarks

Congratulations, you made it through this slic-
ing book. As a result, you have improved your
skills in understanding slicing in Python—an
integral part of your journey to becoming a
Python master coder.

By now, you should have a fair estimate
of your skill level in comparison to others. Be

101

sure to check out Table 2.1 again to get the
respective rank for your Elo rating.

Consistent effort and persistence is the key
to success. Do you feel that solving code puz-
zles has advanced your skills? Make it a daily
habit to solve a Python puzzle and watch the
related video on the Finxter web app. This
habit alone will push your coding skills through
the roof—and provide a comfortable living for
you and your family in a highly profitable pro-
fession. Build this habit into your life—e.g.,
use your morning coffee break routine—and
you will soon become one of the best program-
mers in your environment.

Where to go from here? I am publish-
ing a fresh code puzzle every couple of days
on our website https://finxter.com. All
puzzles are available for free. My goal with

https://finxter.com

Finxter is to make learning to code easy, indi-
vidualized, and accessible.

• For any feedback, questions, or prob-
lems where you struggle or need help,
please send an email to info@finxter.
com.

• To grow your Python skills on autopilot,
register for the free Python email course
at the following url: http://bit.ly/
free-python-course.

• This is the second book in the Coffee
Break Python series which is all about
pushing you—in your daily coffee break—
to the intermediate level in Python. Please
find the first book at http://bit.ly/
coffee-break-python.

info@finxter.com
info@finxter.com
http://bit.ly/free-python-course
http://bit.ly/free-python-course
http://bit.ly/coffee-break-python
http://bit.ly/coffee-break-python

Having read this book, you will feel confi-
dent using slicing in your everyday life. Please
rate the book on Amazon to help others find-
ing it.

Finally, I would like to express my deep
gratitude that you have spent your time solv-
ing code puzzles and reading this book. Above
everything else, I value your time. The ul-
timate goal of any good textbook should be
to save your time. By working through this
textbook, you have gained insights about your
coding skill level and I hope that you have ex-
perienced a positive return on invested time
and money. Now, please keep investing in
yourself and stay active within the Finxter
community.

	Contents
	Introduction
	How to Use This Book
	What Is a Code Puzzle?
	Why Puzzle-based Learning?
	How to Measure Your Python Skills with This Book?

	A Quick Overview of the Python Language
	Keywords
	Basic Data Types
	Complex Data Types
	Classes
	Functions and Tricks

	Introduction to Slicing
	Intermezzo: Indexing Basics
	Slicing
	The Step Size in Slicing
	Overshooting Indices in Slicing
	Summary Basic Python Slicing
	Frequently Asked Questions

	Code Puzzles Slicing
	Final Remarks

